Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 995978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246298

RESUMO

Saccharopolyspora is an important microorganism in the fermentation process of wheat qu and huangjiu, yet the mechanisms by which it performs specific functions in huangjiu remain unclear. A strain with high amylase and glucoamylase activities was isolated from wheat qu and identified as Saccharopolyspora rosea (S. rosea) A22. We initially reported the whole genome sequence of S. rosea A22, which comprised a circular chromosome 6,562,638 bp in size with a GC content of 71.71%, and 6,118 protein-coding genes. A functional genomic analysis highlighted regulatory genes involved in adaptive mechanisms to harsh conditions, and in vitro experiments revealed that the growth of S. rosea A22 could be regulated in response to the stress condition. Based on whole-genome sequencing, the first genome-scale metabolic model of S. rosea A22 named iSR1310 was constructed to predict the growth ability on different media with 91% accuracy. Finally, S. rosea A22 was applied to huangjiu fermentation by inoculating raw wheat qu, and the results showed that the total higher alcohol content was reduced by 12.64% compared with the control group. This study has elucidated the tolerance mechanisms and enzyme-producing properties of S. rosea A22 at the genetic level, providing new insights into its application to huangjiu.

2.
J Sci Food Agric ; 102(15): 7301-7312, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35757866

RESUMO

BACKGROUND: Mechanized Huangjiu is a stable product, is not subject to seasonal production restrictions, and markedly reduces labor intensity compared to traditional manual Huangjiu. However, the bitterness of mechanized Huangjiu impedes its further development. RESULTS: Based on process optimization, when the fermentation temperature was 45 °C and the fermentation time was 122 h, the inoculation amount of Saccharopolyspora was 5%, the amount of added water was 26%, and the glucoamylase and amylase activities of wheat Qu increased by 27% and 40% respectively, compared with those before optimization. Huangjiu fermented by raw wheat Qu inoculated with Saccharopolyspora rosea F2014 showed a significant (P < 0.05) decrease in bitter amino acid content (1.24 vs. 2.86 g L-1 , a decrease of 56%), which attenuated its bitterness. CONCLUSION: An innovative fermentation process of inoculating Saccharopolyspora into raw wheat Qu was developed for the first time. Such a process could be used to control bitterness based on raw wheat Qu inoculated with Saccharopolyspora rosea F2014, instead of traditional wheat Qu in Huangjiu fermentation. © 2022 Society of Chemical Industry.


Assuntos
Saccharopolyspora , Saccharopolyspora/metabolismo , Fermentação , Glucana 1,4-alfa-Glucosidase/metabolismo , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...